International Rectifier

IRF7805QPbF

- Advanced Process Technology
- Ultra Low On-Resistance
- N Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- 150°C Operating Temperature
- Automotive [Q101] Qualified
- Lead-Free

Description

Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in package utilize the lastest processing techniques to achieve extremely low onresistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

The efficient SO-8 package provides enhanced thermal characteristics making it ideal in a variety of power applications. This surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel.

Device Features

	IRF7805Q
V_{DS}	30V
R _{DS(on)}	11m Ω
Qg	31nC
Qsw	11.5nC
Qoss	36nC

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	± 12	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	13	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	10	А
I _{DM}	Pulsed Drain Current ①	100	
P _D @T _A = 25°C	Power Dissipation ③	2.5	W
P _D @T _A = 70°C	Power Dissipation ③	1.6	
	Linear Derating Factor	0.02	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ®		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient ③⑥		50	

IRF7805QPbF

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage®	30			V	$V_{GS} = 0V, I_D = 250\mu A$
R _{DS(on)}	Static Drain-to-Source On-Resistance®		9.2	11	mΩ	V _{GS} = 4.5V, I _D = 7.0A ②
$V_{GS(th)}$	Gate Threshold Voltage ®	1.0		3.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			70		$V_{DS} = 30V, V_{GS} = 0V$
				10	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				150	Ī	V _{DS} = 24V, V _{GS} = 0V, T _J = 100°C
I _{GSS}	Gate-to-Source Forward Leakage			100	^	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -12V
Qg	Total Gate Charge ®		22	31		$V_{GS} = 5.0V$
Q _{gs1}	Pre-Vth Gate-to-Source Charge		3.7		Ĭ	$V_{DS} = 16V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.4		nC	$I_D = 7.0A$
Q_{gd}	Gate-to-Drain Charge		6.8		Ī	
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd}) ©		8.2	11.5	Ī	
Q _{oss}	Output Charge ©		3.0	3.6	nC	$V_{DS} = 16V, V_{GS} = 0V$
R _G	Gate Resistance	0.5		1.7	Ω	
t _{d(on)}	Turn-On Delay Time		16			V _{DD} = 16V, V _{GS} = 4.5V ③
t _r	Rise Time		20		Ì	$I_D = 7.0A$
t _{d(off)}	Turn-Off Delay Time		38		ns	$R_G = 2\Omega$
t _f	Fall Time		16		Ī	Resistive Load

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			2.5		MOSFET symbol	
	(Body Diode) ①				Α	showing the	
I _{SM}	Pulsed Source Current			106	T ^	integral reverse	
	(Body Diode)				100		p-n junction diode.
V_{SD}	Diode Forward Voltage ®			1.2	V	$T_J = 25$ °C, $I_S = 7.0$ A, $V_{GS} = 0$ V	
Q _{rr}	Reverse Recovery Charge @		88			di/dt = 700A/µs	
					ns	$V_{DS} = 16V, V_{GS} = 0V, I_{S} = 7.0A$	
$Q_{rr(s)}$	Reverse Recovery Charge		55		nC	di/dt = 700A/µs (with 10BQ040)	
	(with Parallel Schottky) @					$V_{DS} = 16V, V_{GS} = 0V, I_{S} = 7.0A$	

Notes:

IRF7805QPbF

International

TOR Rectifier

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

International IOR Rectifier

IRF7805QPbF

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

> International IOR Rectifier